Эквализация: настраиваем добротность фильтров (Q). Экспериментальный Q-метр Добротность резонанса

Повышение Q контура
А. Партин, г. Екатеринбург

Основным показателей эффективности колебательного контура является добротность (Q). Физический смысл добротности - отношение запасенной в контуре энергии к рассеиваемой. Добротность зависит от потерь энергии в контуре, которые вызваны нагревом проводов, потерями в конденсаторе и катушке индуктивности, а также излучением электромагнитных волн в окружающую среду. Как бы идеально ни изготавливался колебательный контур, он обязательно имеет активное сопротивление.
Активное сопротивление катушки с ростом частоты возрастает и может увеличиваться в десятки раз. Это вызвано тем, что переменный ток высокой частоты вытесняется ближе к поверхности проводника (скин-эффект). Вот почему для увеличения добротности катушек их мотают многожильным изолированным проводом типа ЛЭШО. Добротность контурной катушки QL определяется:

где
- частота контура;
L - интдуктивность катушки;
RL - сопротивление потерь.
Добротность конденсатора Qc вычисляется по формуле


где
С - ёмкость конденсатора;
RС - сопротивление потерь.

Добротность контура Q тем выше, чем выше добротность его элементов и определяется выражением:

; .

где
ρ - характеристическое (волновое) сопротивление контура;
r=rC +rL - суммарное сопротивление контура.

Не надо забывать основную формулу, определяющую резонансную частоту fp колебательного контура:

Следовательно, добиваясь изменения одного параметра контура, например, L, чтобы не «уплывала» частота, произведение LC должно оставаться постоянным. Одну и ту же резонансную частоту можно получить при разных значениях индуктивности и ёмкости, подобно тому как одну и ту же площадь прямоугольника можно получить при разных соотношениях его сторон. Для того чтобы получить высокую добротность контура, выбор величин L и С требует определенных условий. При конструировании колебательных контуров с высокой добротностью предпочтение следует отдавать катушкам с большей индуктивностью. Большая индуктивность - это большое количество витков, а для высокой добротности провод следует брать как можно толще, что не всегда возможно.

Применение ферромагнитных сердечников позволяет уменьшить размеры катушек и повысить их добротность. Кроме того, с помощью подстроечных сердечников легко регулировать индуктивность катушек. Однако с ферромагнитными сердечниками появляется зависимость индуктивности и, соответственно, добротности катушек от величины протекающего тока. Особенно сильной эта зависимость окидывается в замкнутых магнитопроводах (тороидах). С увеличением тока происходит потеря магнитных свойств сердечника.

На рис.1 показан транзисторный резонансный усилитель на частоту 503 кГц, а в табл.1 приведены L, С и соответствующее значение коэффициента усиления.
На рис.2 показан заграждающий фильтр на эту же частоту (503 кГц), в табл.2 - номиналы LC-компонентов и коэффициента ослабления Кос фильтра.

Предлагаю пару практических советов , которые позволят довольно просто настроить колебательный контур на определенную частоту. Для этого требуется генератор стандартных сигналов (ГСС-6, Г4-18а, Г4-42 и др.) и любой низкочастотный осциллограф.
Способ 1 . Соединяем катушку и заранее отградуированный конденсатор переменной емкости в последовательную цепь (рис.За). Эта цепь включается в гнездо 1 В генератора (ГСС). Все аттенюаторы устанавливаются в максимальное положение. Перед измерением включаем генератор, выставляем необходимую частоту и замыкаем выход генератора (1 В) на корпус. Если аттенюаторы установлены на максимум, то стрелка внутреннего вольтметра установится практически на нулевое деление.
Подключаем настраиваемую цепь. Стрелка устанавливается на определенное деление шкалы, поскольку последовательный контур на частоте, отличной от резонансной, имеет достаточно большое сопротивление. Вращая ручку эталонного конденсатора, фиксируем тот момент, когда стрелка вольтметра отклонится влево (сопротивление контура на резонансной частоте уменьшается). Чем резче отклонение стрелки, тем выше добротность контура. Отсчитываем значение емкости конденсатора. Если величина емкости мала, а отклонения стрелки нет, то следует смотать некоторое количество витков провода с катушки.
Способ 2 . Собираем схему по рис.3б. С резистора R1 берется сигнал на осциллограф. Вращая ручку
конденсатора, фиксируем момент минимума сигнала на осциллографе.

Любой резонансный контур, в том числе и последовательный принято характеризовать добротностью Q и характеристическим сопротивлением .

Напомним, что в данном случае будем рассматривать определение добротности контура при изменении частоты источника питания.

При резонансе
.

Добротность контура определяет кратность превышения напряжения на зажимах индуктивного или емкостного элемента сопротивления при резонансе над напряжением всей цепи U = U R .

В электротехнических и радиотехнических установках добротности могут быть любого порядка, вплоть до десятков тысяч. При больших добротностях (50–500) U L 0 >> U R , U R = U ВХ = U , т. е. напряжение на индуктивности (или на емкости) во много раз больше приложенного напряжения.

Выясним влияние добротности на резонансные кривые при последовательном соединении

R, L, С. Ток в цепи равен

Относительное значение тока:
, т.е.
.

Пои выводе этой формулы учитывалось, что
.

Иногда вводят понятие относительной частоты
.

Тогда предыдущая формула запишется так

Построим резонансные кривые в относительных (по току) единицах (рис. 7.8) для трех добротностей. Рассматривая три резонансные кривые, видим, что чем больше добротность, тем острее получается резонансная кривая. Полоса пропускания контура определяется разностью частот, которые получатся при пересечении резонансной кривой горизонтальной линией на уровне .

Из рис. 7.8 видно, что чем меньше добротность, тем шире полоса пропускания. В радиоприемниках колебательные контуры имеют большие добротности (500–1000), поэтому эти контуры обладают достаточно узкими полосами пропускания, что способствует избирательному радиоприему только одной станции.

7.6. Определение добротности по резонансной кривой

На практике резонансные частотные характеристики реальных контуров можно получать, изменяя частоту генератора в определенных пределах и снимая показания вольтаметра, подключенного параллельно резистору (см. рис. 7.9 а ). Строят экспериментальную резонансную кривую и по этой кривой определяют полосу пропускания. Выведем соответствующую формулу для расчета добротности по резонансной кривой, снятой экспериментально.

Из рис. 7.9 б следует:

.

В этом равенстве знаменатели равны, поэтому

Отсюда
.

Запишем дважды: при итакие выражения
;
.

После сложения последних выражений получим

или

Отсюда

Очень важно: добротность обратно пропорциональна
.

Для последовательного контура R , L, С построена резонансная кривая тока при изменении

емкости С (рис. 7.10).

Пользуясь этой кривой, определим добротность контура. Выражение для тока

Выполним ряд преобразований последней формулы

;

.

Проведем горизонтальную прямую на уровне
.

Отметим значения емкости C 1 и С 2 .

емкости С 1 и С 2 . Запишем

Найдем сумму и разность емкостей

Запишем отношение
.

Напомним, что добротность контура определяется превышением напряжения на индуктивном (или емкостном) сопротивлении при резонансе над напряжением всей цепи (или напряжением на активном сопротивлении), т. е.

Таким образом,

Кроме этого результата, представляется возможным получить значения параметров катушки индуктивности (L и R)

.

Откуда
;
.

Откуда
.

Величина емкости С 0 , при которой наступает резонанс, определится так:

;
;
;
.

Откуда
.

Резонанс напряжений может наблюдаться в схеме, показанной на рис. 7.11.

Входное сопротивление такой схемы

При резонансе реактивная составляющая входного сопротивления должна быть равна нулю, т. е.

Добротность колебательной системы

отношение энергии, запасённой в колебательной системе, к энергии, теряемой системой за один период колебания. Добротность характеризует качество колебательной системы (См. Колебательные системы), т.к. чем больше Д. к. с., тем меньше потери энергии в системе за одно колебание. Д. к. с. Q связана с логарифмическим Декремент ом затухания δ; при малых декрементах затухания Q ≈ π/δ. В колебательном контуре с индуктивностью L , ёмкостью C и омическим сопротивлением R Д. к. с.

где ω - собственная частота контура. В механической системе с массой m , жёсткостью k и коэффициентом трения b Д. к. с.

Добротность - количественная характеристика резонансных свойств колебательной системы, указывающая, во сколько раз амплитуда установившихся вынужденных колебаний (См. Вынужденные колебания) при Резонанс е превышает амплитуду вынужденных колебаний вдали от резонанса, т. е. в области столь низких частот, где амплитуду вынужденных колебаний можно считать не зависящей от частоты. На этом свойстве основан метод измерения Д. к. с. Величина добротности характеризует также и избирательность колебательной системы; чем больше добротность, тем у́же полоса частот внешней силы, которая может вызвать интенсивные колебания системы. Экспериментально Д. к. с. обычно находят как отношение частоты собственных колебаний к полосе пропускания системы, т. е. Q = ω/Δω. Численные значения Д. к. с.: для радиочастотного колебательного контура 30-100; для камертона 10000; для пластинки пьезокварца 100000; для объёмного резонатора СВЧ колебаний 100-100000.

Лит.: Стрелков С. П., Введение в теорию колебаний, 2 изд., М., 1964; Горелик Г. С., Колебания и волны, 2 изд., М., 1959.

В. Н. Парыгин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Добротность колебательной системы" в других словарях:

    Большой Энциклопедический словарь

    Характеристика резонансных свойств системы, показывающая, во сколько раз амплитуда вынужденных колебаний при резонансе превышает амплитуду при его отсутствии. Чем выше добротность колебательной системы, тем меньше потери энергии в ней за период.… … Энциклопедический словарь

    Характеристика резонансных свойств системы, показывающая, во сколько раз амплитуда вынужденных колебаний при резонансе превышает амплитуду при его отсутствии. Чем выше Д. к. с., тем меньше потери энергии в ней за период. Добротность колебат.… … Естествознание. Энциклопедический словарь

    Величина, характеризующая резонансные свойства линейной колебат. системы; численно равна отношению резонансной частоты со к ширине резонансной кривой Dw на уровне убывания амплитуды в?2 раза: Q=w/Dw. Принято также выражать Д. колебат. системы… … Физическая энциклопедия

    Современная энциклопедия

    Добротность - колебательной системы, характеристика резонансных свойств системы, показывающая, во сколько раз амплитуда вынужденных колебаний при резонансе превышает их амплитуду вдали от резонанса. Чем выше добротность системы, тем меньше потери энергии в ней … Иллюстрированный энциклопедический словарь

    Добротность характеристика колебательной системы, определяющая полосу резонанса и показывающая, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний. Добротность обратно пропорциональна скорости… … Википедия - Собственная добротность колебательной системы. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М. Горностаева. Москва, 2002] Тематики электросвязь, основные понятия EN unloaded Q … Справочник технического переводчика