Гены, кодирующие т-клеточные рецепторы. Т-клеточный рецептор. Строение, функции. Активный центр Главная особенность т клеточного рецептора

Изучение процесса распознавания антигена В-клетками не вызвало особых экспериментальных осложнений. Легкость обнаружения мембранного иммуноглобулина у данного клеточного типа давала в руки исследователей основу для детального анализа явления. При этом поиск аналогичных структур у Т-клеток столкнулся с определенными трудностями. Использование тех же экспериментальных подходов, которые применялись при изучении антигенных рецепторов у В-клеток, не привело к положительным результатам. Первые шаги к решению проблемы были сделаны, как это ни странно, не в молекулярной иммунологии, а в клеточной - в экспериментах с генетически отличающимися клетками, взаимодействующими in vitro.

Первоначально в гипотетической, на основании клеточной феноменологии, а затем в экспериментально хорошо документированной форме с использованием методов молекулярной биологии было установлено, что Т-клеточный рецептор распознает не собственно чужеродный антиген, а его комплекс с белками, контролируемыми главным комплексом гистосовместимости (МНС).
Основные доказательства двойного распознавания: молекул I и II классов МНС и ассоциированного с ними антигенного пептида, получены Р. Цинкернагелем и П.Дохерти. Исследования этих ученых были отмечены присуждением Нобелевской премии по медицине за 1997 г.

Строение Т-клеточных антигенраспознающих рецепторов
Известно два типа Т-клеточных антигенраспознающих рецепторов: TCRaB и TCRyb (от англ. - Т cell receptor, TCR). Последний экспрессируется на минорной субпопуляции Т-клеток (Тyb), которые в небольшом количестве представлены в тимусе и на периферии - в селезенке, крови. В онтогенезе они предшествуют Т-клеткам с TCRaB (TaB). Для их созревания не требуется тимус, они способны к самовоспроизведению, принимают участие в антибактериальной защите, реагируя на углеводные компоненты. Филогенетически Тyb предшествовали ТaB.

Попытки выявить TCR с помощью антииммуноглобулиновых антител, как это было сделано при поиске антигенраспознающих структур у В-клеток, оказались безуспешными.
Идентифицировать TCR удалось только с применением моноклональных антител (мАТ) и клонированных линий Т-клеток. Некоторые клоноспецифические мАТ реагировали только с клонами, выделенными от предварительно иммунизированных животных. Внесение в культуру таких клонов, соответствующих по специфичности мАТ, подавляло способность клонированных Т-клеток распознавать антиген, использованный для иммунизации. Наличие подобных антигенспецифических мАТ обеспечило полноценное изучение антигенраспознающих структур Т-клеток.

Каждая функционально зрелая Т-клетка имеет около 3 104 TCR. Они представляют собой гетеродимер, построенный для большинства клеток из ос- и (3-цепей, ковалентно связанных между собой цистеиновым мостиком. Каждая цепь состоит из вариабельного V-домена и константного С-домена, гомологичных соответствующим доменам иммуноглобулинов. В структуре TCR представлен также шарнирный домен с цистеиновым остатком, который образует дисульфидный мостик, объединяющий а- и B-цепив единую молекулу.
На клеточной мембране TCR удерживается гидрофобной трансмембранной последовательностью аминокислотных остатков. Характерной чертой трансмембранного домена является присутствие в нем положительно заряженных аминокислотных остатков. Заканчивается каждая цепь коротким цитоплазматическим хвостом, погруженным в цитоплазму. Имеющиеся структурные различия между TCRu BCR не могут считаться определяющими, так как основное свойство - построение активного антигенраспознающего участка за счет процессов рекомбинации и взаимодействия двух V-доменов - остается общим.

Генетический контроль структуры Т-клеточного антигенраспознающего рецептора
Организация генов, кодирующих а- и B-цепи TCR, в основном гомологична той, которая известна для легких и тяжелых цепей иммуноглобулинов. V-домен ос-цепи, подобно легкой цепи иммуноглобулинов, контролируется только V- и J-генными сегментами. В то же время образование V-домена B-цепи, как и тяжелой цепи иммуноглобулинов, обеспечено полным набором V-, D-, J-генных сегментов.

В геноме Т-клеток имеется более 100 V-генов для а-цепи TCR, что в два с половиной раза меньше того количества, которое известно для легких цепей иммуноглобулинов.
Каждый такой ген включает два экзона - один для лидерной (L) последовательности, отсутствующей у зрелой а-цепи, но представленной у этойцепи в момент ее транспорта из эндоплазматического ретикулума к клеточной поверхности, и второй - для кодирования собственно V-домена TCR. J-генных сегментов для а-цепи значительно больше, чем для легкой цепи иммуноглобулинов (100 против 4). Константная область а-цепи контролируется С-геном, включающим отдельные экзоны для С-домена и шарнира и один общий экзон - для трансмембранной и хвостовой частей молекулы.

Количество V-генов для B-цепи равно 30. Кроме того, имеется два кластера DJC. Каждый кластер включает один D- и шесть активных J-генных сегментов. Функциональные различия между кластерами неизвестны. С-ген для константной области B-цепи включает четыре экзона для константного, шарнирного, трансмембранного и хвостового участков полипептида. Процессы рекомбинации, транскрипции, сплайсинга и трансляции генетического материала для а- и Р-цепей при образовании TCR в Т-клетках аналогичны тем, которые обеспечивают синтез иммуноглобулинов в В-клетках.

Так же как и в случае с иммуноглобулинами и иммуноглобулиновыми рецепторами, вариабельность TCR зависит от случайного взаимодействия генных сегментов в процессе рекомбинации генетического материала, кодирующего V-домены: VJ - для а-цепей и VDJ - для B-цепей, а также за счет тех дополнительных изменений, которые, как и в случае с BCR, сопровождают рекомбинацию. Исключение составляет отсутствие соматического мутагенеза в V-генах. Расчет вариабельности V-доменов TCR, который проводится так же, как и для иммуноглобулинов, показывает крайне высокий уровень разнообразия этих антигенраспознающих структур. Так, только наличие в геноме нерекомбинированных V-, D- и J-генных сегментов дает потенциально (без учета модификаций при реорганизации) 2,8 106 вариантов.

Иммуноглобулины и иммуноглобулиновые рецепторы В-клеток распознают нативные антигенные эпитопы. В связи с этим отдельные участки антигенраспознающего центра имеют равные шансы на изменчивость. Ситуация с TCR несколько иная, поскольку этот рецептор распознает комплекс антигенного пептида с молекулами МНС.

Разнообразие TCR связано в значительной степени с третьей петлей V-домена, формируемой третьим гипервариабельным участком - CDR3 (от англ. - complementarity determining region). При образовании антигенсвязующего центра CDR3 оказываются в его внутренней части. Первая и вторая петли - CDR1 и CDR2 - занимают соответственно периферию центра. В таком конформационном построении имеется вполне определенный биологический смысл, связанный с адаптацией TCR к той форме иммуногена, с которой он взаимодействует. Антигенные пептиды заполняют пространство (щель), образованное а-спиральными структурами молекул МНС, и таким образом оказываются в середине антигенного комплекса пептид: МНС. Подобный комплекс характеризуется огромным множеством антигенных специфичностей, связанных с пептидами, и ограниченным разнообразием, свойственным молекулам МНС. В связи с подобной организацией иммуногенного комплекса следует ожидать повышенную изменчивость CDR3 и меньшую изменчивость CDR1 и CDR2. Изучение генетической организации генов для TCR подтверждает подобную точку зрения. Так, TCR имеет значительно меньшее по сравнению с иммуноглобулинами количество V-генов, определяющих специфичность CDR1 и CDR2, но при этом увеличенное число J-cer-ментов, принимающих участие в кодировании CDR3.Антигенраспознающие рецепторы и сопутствующие белки в процессе активации Т-клеток

TCR, как и мембранный антигенраспознающий иммуноглобулин В-клеток, имеет очень короткий цитоплазматический хвост. В связи с этим сигнал от взаимодействия TCR с комплексом пептид: молекулы МНС не может быть передан внутрь клетки. Трансмиссивную функцию выполняют инвариантные, низкомолекулярные, ассоциированные с TCR белки, которые получили общее название - CD3. Комплекс CD3 включает пять белков: белки CD3y, CD3b и CD3e представлены на клеточной поверхности и имеютопределенную гомологию с иммуноглобулинами, цитоплазматические белки CD3? и CD3n не имеют такой гомологии.

Белки, гомологичные иммуноглобулинам, экспрессируются на клеточной поверхности в виде гетеродимеров CD3e6 и CD3ey Их связь с TCR осуществляется посредством электростатического притяжения. Отрицательно заряженные трансмембранные участки цепей CD3 взаимодействуют с несущими положительный суммарный заряд трансмембранными участками TCR. Наличие длинного хвоста позволяет им взаимодействовать с цитоплазматическими белками-трансдукторами после получения антигенного сигнала.

Два других полипептида - CD3t и CD3n - также входят в состав комплекса в виде димеров СС или Сn- Около 80 % TCR ассоциировано с гомодимером и только 20 % с гетеродимером. Функциональные различия между ними неизвестны. Основной домен этих белков в отличие от других СОЗ-белков находится в цитоплазме. Именно головная, а не хвостовая часть С и n взаимодействует в цитоплазме с белками-трансдукторами.

Помимо сигналпередающей функции белки CD3 ответственны за транспорт TCR к клеточной поверхности. У мутантных клеток, в которых отсутствует синтез у-, b- или е-цепей, экспрессия TCR полностью подавлена, хотя внутриклеточный синтез этих рецепторов не нарушен. При мутациях гена С-цепи выход TCR на клеточную поверхность происходит в меньшей степени по сравнению с нормой. Как трансмиссивная, так и транспортная функции CD3 белков гомологичны той, которая характерна для Iga-и Igp-белков иммуноглобулинового, антигенраспознающего комплекса.

В активации Т-клеток, распознавших антиген, принимают участие также корецепторы CD4 и CD8 - маркеры дифференцировки Т-клеток. Как уже отмечалось, первый из них является маркером CD4+ Т-клеток, второй - цитотоксических Т-лимфоцитов (CD8+ Т-клеток). Долгое время функция этих белков оставалась неизвестной. Оказалось, что они принимают самое непосредственное участие в процессе взаимодействия TCR с соответствующим лигандом в качестве корецептора.

CD4 представляет собой одноцепочечную молекулу, состоящую из четырех иммуноглобулинподобных доменов (рис. 4.9). Домены D1 и D2, а также D3 и D4 образуют между собой парные, плотноупакованные, жесткие структуры. Эти пары соединены гибким шарнирным участком. Хвостовая часть молекулы CD4 имеет достаточную длину для взаимодействия с цитоплазматическими белками-трансдукторами. На клеточной поверхности TCR и CD4 представлены независимо друг от друга. Их встреча происходит в процессе формирования ответа на антиген. После распознавания TCR антигенного комплекса происходит взаимодействие CD4 с молекулой II класса МНС. Реакция взаимодействия осуществляется между В2-доменом молекулы II класса МНС и первым доменом CD4. Предполагается также слабое включение во взаимодействие и второго домена D2.

Аналогичная картина наблюдается при распознавании антигенного комплекса цитотоксическими Т-лимфоцитами (ЦТЛ). Действующие участники взаимодействия - TCR цитотоксических Т-лимфоцитов, комплекс пептида с молекулой I класса МНС и маркер цитотоксических Т-лимфоцитов - CD8. CD8, хотя и выполняет сходную с CD4 функцию корецептора, структурно отличается от маркера Т-хелперов. Он представляет собой гетеродимер, каждая цепь которого включает один иммуноглобулинподобный домен и достаточно длинный, связанный с мембраной участок цепи, который подвержен значительным конформационным изменениям. Так же как и CD4, CD8 представлен на клеточной мембране независимо. Его функция корецептора реализуется в процессе антигенного распознавания. После взаимодействия TCR с антигенным лигандом происходит контакт а- и Р-доменов CD8 с а3-доменом молекулы I класса МНС. Образовавшийся молекулярный комплекс является условием передачи через корецептор CD8 сигнала внутрь клетки.

Внутриклеточные события, определяющие активацию Т-клеток, аналогичны тем, которые происходят в В-клетках после антигенной стимуляции. Образовавшийся агрегат из антигенпредставляющих молекул МНС, Т-клеточного рецепторного комплекса, включающего CD3 молекулы, и CD4 или CD8 молекул провоцирует внутриклеточное взаимодействие различных тирозинкиназ с цитоплазматической частью полипептидов. Среди СDЗ-белков наибольшей связывающей активностью обладает CD3?, представленный в цитозоле не хвостовой, а головной частью. Активированные в результате взаимодействия киназы обеспечивают каскад реакций, следствием которых является индукция специфической транскрипции генов. Среди генов, вступивших в процесс транскрипции, особое место занимают те, которые кодируют синтез Т-зависимых цитокинов (в частности, ИЛ-2). В конечном счете цепь событий от взаимодействия TCR с антигенным комплексом и образования сложного молекулярного агрегата до внутриклеточных реакционных преобразований приводит к пролиферации.

В- и Т-клетки обладают самостоятельными антигенраспознающими рецепторами, относящимися к одному и тому же суперсемейству иммуноглобулинов. Антигенраспознающие рецепторы В-клеток (BCR) представляют собой мономерную форму IgM, модифицированную дополнительной последовательностью аминокислотных остатков в С-концевой части молекулы. Эта последовательность составляет трансмембранный и хвостовой участки тяжелой цепи. Т-клеточный антигенраспознающий рецептор (TCR) состоит из двух полипептидных цепей, каждая из которых включает два домена: V и С. Механизм генетического контроля V-доменов как BCR, так и TCR в целом сходен и включает процесс случайной рекомбинации генных сегментов (V, D, J). Несмотря на то что функциональное предназначение антигенраспознающих рецепторов двух типов клеток одно и то же (распознавание чужеродности), реализация такой функции В- и Т-клетками осуществляется разными способами. В то время как slg В-клеток распознает собственно антигенную детерминанту без каких-либо дополнительных условий, TCR Т-клеток способен распознать только комплекс антигенной детерминанты с собственными молекулами I или II класса МНС.

Связанных с молекулами главного комплекса гистосовместимости (англ. MHC ) на поверхности антиген-представляющих клеток . TCR состоит из двух субъединиц, заякоренных в клеточной мембране и ассоциирован с многосубъединичным комплексом CD3 . Взаимодействие TCR с MHC и связанным с ним антигеном ведет к активации Т-лимфоцитов и является ключевой точкой в запуске иммунного ответа.

Структура

TCR представляет собой гетеродимерный белок, состоящий из двух субъединиц - α и β либо γ и δ, представленных на поверхности клетки. Субъединицы закреплены в мембране и связаны друг с другом дисульфидной связью.

По своей структуре субъединицы TCR относятся к суперсемейству иммуноглобулинов . Каждая из субъединиц образована двумя доменами с характерной иммуноглобулиновой укладкой, трансмембранным сегментом и коротким цитоплазматическим участком.

N-концевые домены являются вариабельными (V) и отвечают за связывание антигена , презентируемого молекулами главного комплекса гистосовместимости. В составе вариабельного домена содержится характерный для иммуноглобулинов гипервариабельный участок (CDR). За счет необычайного разнообразия данных участков, различные Т-клетки способны распознавать широчайший спектр различных антигенов.

Второй домен - константный (C) и его структура одинакова у всех субъединиц данного типа у конкретной особи (за исключением соматических мутаций на уровне генов любых других белков). На участке между С-доменом и трансмембранным сегментом имеется остаток цистеина , с помощью которого между двумя цепями TCR образуется дисульфидная связь .

Субъединицы TCR агрегированы с мембранным полипептидным комплексом CD3 . CD3 образован четырьмя типами полипептидов - γ, δ, ε и ζ. Субъединицы γ, δ и ε кодируются тесно сцепленными генами и имеют близкую структуру. Каждая из них образована одним константным иммуноглобулиновым доменом, трансмембранным сегментом и длинной (до 40 аминокислотных остатков) цитоплазматической частью. Цепь ζ имеет маленький внеклеточный домен, трансмембранный сегмент, и большой цитоплазматический домен. Иногда вместо цепи ζ в состав комплекса входит цепь η - более длинный продукт того же гена, полученный путём альтернативного сплайсинга .

Поскольку структура белков комплекса CD3 инвариантна (не имеет вариабельных участков), они не способны определять специфичность рецептора к антигену. Распознавание является исключительно функцией TCR, а CD3 обеспечивает передачу сигнала в клетку.

Трансмембранный сегмент каждой из субъединиц CD3 содержит отрицательно заряженный аминокислотный остаток , а TCR – положительно заряженный. За счет электростатических взаимодействий они объединяются в общий функциональный комплекс Т-клеточного рецептора. На основании стехиометрических исследований и измерения молекулярной массы комплекса наиболее вероятным его составом является (αβ) 2 +γ+δ+ε 2 +ζ 2 .

TCR, состоящие из αβ-цепей и γδ-цепей весьма близки по структуре. Эти формы рецепторов по-разному представлены в различных тканях организма.

Напишите отзыв о статье "Т-клеточный рецептор"

Отрывок, характеризующий Т-клеточный рецептор

– Всё казаки поразули. Чистили для полковника избу, выносили их. Жалости смотреть, ребята, – сказал плясун. – Разворочали их: так живой один, веришь ли, лопочет что то по своему.
– А чистый народ, ребята, – сказал первый. – Белый, вот как береза белый, и бравые есть, скажи, благородные.
– А ты думаешь как? У него от всех званий набраны.
– А ничего не знают по нашему, – с улыбкой недоумения сказал плясун. – Я ему говорю: «Чьей короны?», а он свое лопочет. Чудесный народ!
– Ведь то мудрено, братцы мои, – продолжал тот, который удивлялся их белизне, – сказывали мужики под Можайским, как стали убирать битых, где страженья то была, так ведь что, говорит, почитай месяц лежали мертвые ихние то. Что ж, говорит, лежит, говорит, ихний то, как бумага белый, чистый, ни синь пороха не пахнет.
– Что ж, от холода, что ль? – спросил один.
– Эка ты умный! От холода! Жарко ведь было. Кабы от стужи, так и наши бы тоже не протухли. А то, говорит, подойдешь к нашему, весь, говорит, прогнил в червях. Так, говорит, платками обвяжемся, да, отворотя морду, и тащим; мочи нет. А ихний, говорит, как бумага белый; ни синь пороха не пахнет.
Все помолчали.
– Должно, от пищи, – сказал фельдфебель, – господскую пищу жрали.
Никто не возражал.
– Сказывал мужик то этот, под Можайским, где страженья то была, их с десяти деревень согнали, двадцать дён возили, не свозили всех, мертвых то. Волков этих что, говорит…
– Та страженья была настоящая, – сказал старый солдат. – Только и было чем помянуть; а то всё после того… Так, только народу мученье.
– И то, дядюшка. Позавчера набежали мы, так куда те, до себя не допущают. Живо ружья покидали. На коленки. Пардон – говорит. Так, только пример один. Сказывали, самого Полиона то Платов два раза брал. Слова не знает. Возьмет возьмет: вот на те, в руках прикинется птицей, улетит, да и улетит. И убить тоже нет положенья.
– Эка врать здоров ты, Киселев, посмотрю я на тебя.
– Какое врать, правда истинная.
– А кабы на мой обычай, я бы его, изловимши, да в землю бы закопал. Да осиновым колом. А то что народу загубил.
– Все одно конец сделаем, не будет ходить, – зевая, сказал старый солдат.
Разговор замолк, солдаты стали укладываться.
– Вишь, звезды то, страсть, так и горят! Скажи, бабы холсты разложили, – сказал солдат, любуясь на Млечный Путь.
– Это, ребята, к урожайному году.
– Дровец то еще надо будет.
– Спину погреешь, а брюха замерзла. Вот чуда.
– О, господи!
– Что толкаешься то, – про тебя одного огонь, что ли? Вишь… развалился.
Из за устанавливающегося молчания послышался храп некоторых заснувших; остальные поворачивались и грелись, изредка переговариваясь. От дальнего, шагов за сто, костра послышался дружный, веселый хохот.
– Вишь, грохочат в пятой роте, – сказал один солдат. – И народу что – страсть!
Один солдат поднялся и пошел к пятой роте.
– То то смеху, – сказал он, возвращаясь. – Два хранцуза пристали. Один мерзлый вовсе, а другой такой куражный, бяда! Песни играет.
– О о? пойти посмотреть… – Несколько солдат направились к пятой роте.

Пятая рота стояла подле самого леса. Огромный костер ярко горел посреди снега, освещая отягченные инеем ветви деревьев.
В середине ночи солдаты пятой роты услыхали в лесу шаги по снегу и хряск сучьев.
– Ребята, ведмедь, – сказал один солдат. Все подняли головы, прислушались, и из леса, в яркий свет костра, выступили две, держащиеся друг за друга, человеческие, странно одетые фигуры.
Это были два прятавшиеся в лесу француза. Хрипло говоря что то на непонятном солдатам языке, они подошли к костру. Один был повыше ростом, в офицерской шляпе, и казался совсем ослабевшим. Подойдя к костру, он хотел сесть, но упал на землю. Другой, маленький, коренастый, обвязанный платком по щекам солдат, был сильнее. Он поднял своего товарища и, указывая на свой рот, говорил что то. Солдаты окружили французов, подстелили больному шинель и обоим принесли каши и водки.

2094 0

Организация генов человека, кодирующих α-, β-и δ-цепи Т-клеточного рецептора, показана на рис. 8.6. (В связи со сложностью организация γ-генов не показана.) Несколько свойств заслуживают особого внимания. Во-первых, α- и γ-цепи конструируются из V- и J-генных сегментов, подобно L-цепям lg, в то время как β- и δ-цепи конструируются из V-, D- и J-генных сегментов подобно Н-цепям lg. Во-вторых, локусы Р и у находятся на разных хромосомах, в то время как генные сегменты локусов α и δ располагаются на одной.

Рис. 8.6. Организация α-, β- и δ-генов человека, кодирующих Т-клеточный рецептор

Гены, кодирующие δ-цепь, ограничены с двух сторон (на 5"- и 3"-концах) генами, кодирующими α-цепь. В-третьих, в зародышевой линии имеется больше Vα- и Vβ-генов, чем Vγ- и Vδ-генов (5-10). Заметьте также, что имеется два Сβ-гена (Сβ1 и Сβ2), но эти гены и их продукты практически идентичны и какие-либо функциональные различия между ними неизвестны. Таким образом, их не нужно отождествлять с изотипами антител, у которых константные гены Н-цепи lg и их продукты значительно различаются.

Отдельные V-области TCR получили номера, например Vα2 и Vβ7. Интересно, что использование определенных V-областей TCR в некоторых случаях было связано с ответом на специфичные антигены, в особенности на суперантигены - ряд антигенов, активирующих все Т-клетки, экспрессирующие определенный Vβ в качестве компонента своего TCR. Для человека суперантигенами являются некоторые бактериальные токсины . Воздействие этих бактериальных продуктов на Т-клетки может вызывать множество реакций, которые часто имеют клинические последствия.

Положение с TCR-генами некоторым образом сходно с этим; β-, γ- и δ-гены TCR подчиняются правилу аллельного исключения, а α-гены - нет. Таким образом, некоторые Т-клетки, которые используют αβ в качестве своих TCR, имеют две разные α-цепи, экспрессируемые с одной β-цепью, и, следовательно, могут обладать двумя различными антигенными специфичностями. До 30 % αβ-Т-клеток человека и мыши экспрессируют две α-цепи, но их функциональная значимость до сих пор не ясна.

Разнообразие Т-клеточных рецепторов

Механизмы возникновения разных Т-клеточных рецепторов очень схожи с механизмами возникновения В-клеточных рецепторов. Основные принципы реаранжировки генов действуют при синтезе V- и С-областей каждой цепи Т-клеточного рецептора (α, β, γ и δ). Для соединения структур VJ или VDJ используются рекомбиназы и соединительные последовательности, обеспечивающие специфичность вариабильной области определенной полипептидной цепи TCR. В процессе рекомбинации в В- и Т-клетках участвуют одни и те же ферменты.

В активации генов рекомбиназы на ранних стадиях дифференцировки как В-, так и Т-клеток главную роль играют два гена, называемые генами активации рекомбинации (RAG-1 и RAG-2). Таким образом, как и при возникновении различий между lg, различия TCR обусловлены: 1) наличием многочисленных V-генов в зародышевой линии; 2) случайной комбинацией цепей; 3) вариабильностью соединений и вставок. Однако существует одно важное отличие между возникновением различий у TCR и молекул lg, указанное ранее: в отличие от TCR lg после стимуляции антигеном претерпевают соматический гипермутагенез.

Репертуар различных TCR считается таким же или даже большим, чем репертуар молекул lg (по оценкам количество возможных различий в специфичности для αβ составляет 1015, а для γδ-TCR - 1018). Вариабельность соединений и вставок является важной составляющей в возникновении различных TCR. Именно благодаря ей образуется огромное количество различных последовательностей гипервариабельного участка TCR, известного как CDR3. (В отличие от этого CDR1- и CDR2-пocлeдoвaтeльнocти TCR не возникают при реаранжировке, а кодируются V-геном, который находится в зародышевой линии.)

Данные кристаллографии указывают, что CDR3 является участком связывающего центра αβ-TCR, который контактирует с аминокислотами в центре пептида, связанного с молекулой МНС (см. рис. 9.3 и 9.4). Таким образом, большое число различных CDR3-последовательностей обеспечивает высокую специфичность связывания TCR с пептидной частью комплекса пептид-МНС.

Дифференцировка Т-клеток в тимусе

Тимус является первичным лимфоидным органом для развития Т-клеток аналогично тому, как костный мозг является у млекопитающих первичным органом для дифференцировки В-клеток. Это подчеркивает абсолютную необходимость тимуса для дифференцировки незрелых клеток-предшественников в клетки с характеристиками Т-лимфоцитов. Нежелательные последствия отсутствия тимуса и, соответственно, отсутствия зрелых Т-клеток могут наблюдаться у детей, родившихся без тимуса (синдром Ди Джорджи), и у мышей с генетически запрограммированным отсутствием тимуса (известных как «голые» мыши, поскольку у них также отсутствует шерсть).

Дифференцировка Т-клеток в тимусе происходит на протяжении всей жизни индивидуума, но значительно снижается после пубертатного периода. Размер самого тимуса у млекопитающих уменьшается с наступлением полового созревания (инвалюция тимуса) преимущественно вследствие синтеза в это время стероидных гормонов. У некоторых видов, особенно у мышей, популяция зрелых Т-клеток резко истощается, если тимус удалить вскоре после рождения. В действительности именно это наблюдение позволило выявить определяющую роль тимуса в Т-клеточных ответах. Удаление тимуса у животных в более позднее время имеет гораздо меньшее влияние на популяцию зрелых Т-клеток.

Дифференцировка Т-клеток в тимусе является сложным многоступенчатым процессом. В следующих подразделах и на рис. 8.7 мы отметим ряд основных фаз в последовательности дифференцировки.

Взаимодействие тимоцитов с тимическими нелимфоидными клетками

На рис. 8.7 показано, что на каждой стадии созревания в тимусе (от клетки-предшественника до зрелой Т-клетки) развивающиеся Т-лимфоциты (тимоциты) находятся в контакте и взаимодействуют с сетью, формируемой нелимфоидными (стромальными) клетками тимуса. Тимоциты перемещаются сквозь сеть нелимфоидных клеток от внешней зоны - коры тимуса - к внутренней - мозговому веществу тимуса.


Рис. 8.7. Пути развития Т-клеток в тимусе

Наиболее важными нелимфоидными клетками тимуса являются: 1) кортикальные эпителиальные клетки; 2) дендритные клетки, располагающиеся преимущественно на границе коры и мозгового вещества. Дендритные клетки тимуса происходят из костного мозга и входят в то же семейство клеток, которое осуществляет презентацию антигенов Т-клеткам в других тканях и органах.

Далее мы более подробно обсудим, как нелимфоидные клетки обеспечивают основные межклеточные связи, необходимые для развития созревающих Т-лимфоцитов. Они также вырабатывают цитокин IL-7, который индуцирует пролиферацию (В-)Т-лимфоцитов на ранних стадиях развития. Тимус является местом интенсивной пролиферации развивающихся Т-клеток, однако подавляющее большинство этих ежедневно продуцируемых клеток, оцениваемое примерно в 95 %, погибают, не выходя из него.

Реаранжировка генов Т-клеточных рецепторов

Лимфоидные клетки-предшественники проникают в наружные участки тимуса (субкапсулярная зона); при этом их TCR-гены находятся в нереаранжированной конфигурации (зародышевая линия). Обычно считается, что затем гены γ-, δ- и β-цепей вступают в реаранжировку почти одновременно. Клетки, которые продуктивно реаранжируют γ- и δ-гены, экспрессируют γ- и δ-цепи TCR на поверхности клеток. Последовательность процессов на ранних стадиях реаранжировки генов TCR до сих пор до конца не понятна, и не ясно, способны ли клетки, экспрессирующие γ- и δ-цепи на своей поверхности, продуктивно реаранжировать ген β-цепи.

Несмотря на это, наблюдения позволяют предположить, что клетки, экспрессирующие γ- и δ-цепи в качестве своего TCR, отделяются от клеток, которые будут экспрессировать α- и β-цепи в качестве своего рецептора, на ранних стадиях развития в тимусе, хотя стадия, на которой это происходит, до сих пор точно не установлена. Клетки, экспрессирующие γδ как свой TCR, покидают тимус и формируют пул периферических γδ-Т-клеток.

Клетки, продуктивно реаранжирующие β-гены, экспрессируют β-цепь TCR на поверхности клетки в ассоциации с инвариантной молекулой, известной как пре-Тα. Их называют пре-Т-клетками, а сочетание β-цепи и пре-Тα (вместе с CD3 и ζ) составляют пре-Т-клеточный рецептор (пpe-TCR) аналогично пре-В-клеткам и пре-В-клеточным рецепторам.

Клетки, экспрессирующие пpe-TCR, дифференцируются далее. Аналогично фазам дифференцировке пре-В-клеток, передача сигнала через пpe-TCR прекращает дальнейшую реаранжировку β-генов TCR. Этим достигается то, что клетки экспрессируют только один тип β-цепи (аллельное исключение). Кроме того, клетки пролиферируют, и в этой расширенной популяции подавляется экспрессия пре-Тα, начинают реаранжироваться α-гены и допускается экспрессия CD4- и СD8-генов.

Как указано ранее, генные сегменты α и δ-локусов TCR располагаются на одной и той же хромосоме, поэтому реаранжировка α-локуса на определенной хромосоме приводит к исключению δ-локуса. (Это гарантирует то, что β-цепь не становится парной 8-цепи.) Таким образом, следующий важный этап созревания клетки αβ-линии - экспрессия молекул корецепторов CD4 и CD8 на своей поверхности. Такой αβ+- CD3+CD4+CD8+-тимоцит, относящийся к CD4+CD8+, или дважды позитивная клетка, обнаруживается в коре тимуса и формирует большинство тимоцитов в тимусе молодых млекопитающих.

Тимическая селекция

Позитивная селекция

Дважды позитивный тимоцит проходит через многоступенчатый процесс тимической селекции (см. рис. 8.8). (Проходит ли подобный селекционный процесс перед выходом из тимуса γδ-Т-клетка, в настоящее время не ясно.) На первой фазе позитивной селекции TCR дважды позитивного тимоцита взаимодействуют с молекулами МНС, экспрессируемыми на эпителиальных клетках в коре тимуса.

Это взаимодействие приводит к выживанию и дифференцировке дважды позитивных клеток; те же из них, которые не участвуют в этом важном взаимодействии и поэтому не отбираются, погибают посредством апоптоза. Позитивная селекция также приводит к подавлению экспрессии генов RAG-1 и RAG-2 и, таким образом, прекращению дальнейшей реаранжировки генов. Следовательно, поскольку, как указано ранее, α-ген не подвергается аллельному исключению, позитивная селекция прекращает дальнейшие попытки реаранжировки α-цепи.

Другим важным свойством позитивной селекции является то, что развивающаяся αβ-Т-клетка становится «обученной» в отношении молекул МНС, экспрессируемых эпителиальными клетками коры тимуса. Это означает, что всю оставшуюся жизнь Т-клетка, даже в виде зрелой клетки, покинувшей тимус, будет реагировать на антиген только в том случае, если он связан с молекулами МНС, с которыми развивающаяся клетка встретилась в тимусе. По этой причине молекулы МНС, экспрессированные в тимусе индивидуума и «обучившие» его развивающиеся Т-клетки, относят к ауто-МНС; все другие типы молекул МНС для данного человека будут являться несобственными. Этим объясняется возникновение феномена МНС-рестрикции или, более точно, ауто-МНС-рестрикции, которая является основной для Т-клеточного ответа.

Негативная селекция

Поскольку рекомбинации, затрагивающие возникновение TCR, являются более или менее случайными, Т-клетки, экспрессирующие TCR, специфичные относительно чужеродных и собственных антигенов, могут развиваться в тимусе и проходить позитивную селекцию. Существует вероятность, что Т-клетки с выраженной реактивностью к собственным компонентам организма покинут тимус и будут взаимодействовать с такими антигенами в тканях, что может привести к нежелательным аутоиммунным реакциям. Для предотвращения этого дважды позитивные клетки подвергаются второй фазе отбора - негативной селекции (рис. 8.8).


Рис. 8.8. Позитивная и негативная селекция αβ-ТСR+СD4+СD8+Т-клеток в тимусе

На рис. 8.8 показана негативная селекция, наблюдаемая, когда дважды позитивные клетки взаимодействуют с дендритными клетками на границе кортикального и мозгового слоев. В основном взаимодействуют молекулы TCR, CD4 и CD8, экспрессированные на дважды позитивном тимоците, и молекулы МНС, расположенные на дендритной клетке. Поскольку дендритные клетки обладают пептидами, ассоциированными с молекулами МНС, дважды позитивные клетки, похоже, взаимодействуют с МНС и пептидом, экспрессированными на поверхности дендритной клетки.

Т-клетки, экспрессирующие TCR, которые реагируют со слишком высокой аффинностью с комбинацией пептида и МНС, удаляются посредством апоптоза Подобная негативная селекция удаляет Т-клетки, экспрессирующие TCR с высокой реактивностью к собственным компонентам.

Дважды позитивные клетки, пережившие негативную селекцию, снижают экспрессию как CD4, так и CD8 посредством не изученного еще механизма. Все это приводит к развитию или CD4+-CD8-, или CD4+-СD8+-Т-клеток (монопозитивные). Две эти популяции являются конечной точкой сложного процесса ap-TCR-клеточной дифференцировки в тимусе. Они покидают тимус и образуют периферические (т.е. вне тимуса) линии зрелых CD4+- и СD8+-Т-клеток.

Роль пептидов в тимической селекции

Остается еще ряд вопросов по механизмам, участвующим в селекции. Например, каковы роль и природа пептидов, экспрессируемых нелимфоидными тимическими клетками на разных стадиях процессов селекции. Данные современных исследований указывают на то, что пептиды, экспрессируемые кортикальными эпителиальными клетками, играют главную роль на этапе позитивной селекции. Эти пептиды происходят из аутоантигенов, экспрессированных в тимусе или поступивших в него.

В настоящее время не ясно, однако, как эти пептиды, возникающие из аутоантигенов, отбирают Т-клетки с TCR, специфичными по отношению как к несобственным, так и аутологичным антигенам. Кроме того, не ясно, отличаются ли пептиды, экспремированные кортикальными эпителиальными клетками при позитивной селекции, от тех, которые экспрессируются дендритными клетками при негативной селекции.

Другим нерешенным вопросом является то, каким образом взаимодействие TCR. экспрессируемых на дважды позитивной клетке, с молекулами МНС и пептидами, представленными на кортикальных эпителиальных клетках, приводит к выживанию и дифференцировке дважды позитивных клеток, в то время как взаимодействие дважды позитивной клетки с дендритной клеткой тимуса индуцирует отрицательный сигнал (клеточную смерть). Эти проблемы продолжают интенсивно изучать.

Характеристики Т-клеток, покидающих тимус

Дифференцировка в тимусе Т-клеток, экспрессирующих αβ в качестве своих TCR, приводит к образованию репертуара периферических CD4+-и СD8+-Т-клеток, способных реагировать на огромное количество чужеродных антигенов. Эти клетки имеют две важных характеристики.
  • Для них характерна ауто-МНС-рестрикция. Они взаимодействуют с пептидами, образованными из несобственных антигенов только тогда, когда пептиды связаны с тем же набором молекул МНС, с которым развивающаяся Т-клетка взаимодействовала во время позитивной селекции в тимусе.
  • У них отмечается аутотолерантность. CD4+- и CD8+-T-клетки не реагируют на собственные компоненты.
Р.Койко, Д.Саншайн, Э.Бенджамини

Несмотря на то, что Т- и В-клетки довольно легко идентифицировать по поверхностным маркерам (Т3 или CD 3 на Т-клетках и поверхностные Ig на В-клетках), следует иметь также представление о наиболее важных дифференцировочных антигенах Т-лимфоцитов человека. Важнейшими из них являются:

1. CD 2 (от англ. Claster of differentiation - кластер дифференцировки) - это антиген, обнаруживаемый на всех зрелых периферических Т-лимфоцитах (идентичен "рецептору эритроцитов барана", именно он обеспечивает образование розеток с эритроцитами барана - методика выявления Т-клеток). CD 2 принимает участие в процессе неспецифической активации Т-клеток, что играет важную роль при созревании клеток в тимусе, т.к. пролиферация тимоцитов индуцируется до начала экспрессии специфического антигенного процесса.

2. CD 3 - это мембраносвязанный белковый комплекс, состоящий из пяти гликопротеинов, связанный с антигенспецифическим рецептором (Ti ). Этот комплекс " CD 3+ Ti " и представляет собой антигенспецифический Т-клеточный рецептор периферических Т-лимфоцитов человека. Связывание антигена, ассоциированного с детерминантами МНС, является специфическим сигналом для активации зрелой Т-клетки. При этом CD 3 участвует в передаче сигнала внутрь клетки. Непосредственным результатом связывания антигена с рецептором является поступление в клетку ионов Са 2+ .

3. CD 4 - антиген гликопротеиновой природы, который экспрессирует примерно на 2/3 периферических Т-лимфоцитов. На этапе созревания клеток в тимусе CD 4 экспрессируется всеми клетками, а в ходе их дифференцировки сохраняется только на субпопуляции, переставшей экспрессировать CD 8-антиген. В периферической крови примерно 5% клеток несут одновременно маркеры CD 4 и CD 8. Зрелые CD 4+-Т-клетки включают Т-лимфоциты, функционально характеризуемые как хелперы и индукторы. При контакте Т-лимфоцитов (Ti / h - индукторов хелперов) с антигенпрезентирующей клеткой CD 4 выступает в роли специфического места связывания детерминант белковых молекул МНС класса II . Особое значение имеет факт связывание молекулой CD 4 оболочечных белков вируса иммунодефицита человека - возбудителя СПИД, что в результате эндоцитоза приводит к проникновению вируса внутрь клеток субпопуляции Ti / h .

4. CD 8 - антиген, который экспрессируется примерно на 1/3 периферических Т-клеток, созревающих из CD 4+/ CD 8+-Т-лимфоцитов. Субпопуляция CD 8+-Т-клеток включает цитотоксические и супрессорные Т-лимфоциты. При контакте с клеткой-мишенью CD 8 выступает в роли рецептора неполиморфных детерминант белков МНС класса I .

5. Антиген CD 45 R присутствует примерно на 50% Т-клеток (он экспрессируется также В-клетками и моноцитами). Клетки CD 4+/ CD 45 R идентифицированы как индукторы супрессоров, что дает возможность косвенно определять также функционально активные индукторы хелперов.

6.Антиген CD 25 - гликопротеин, идентифицированный как низкоаффинный рецептор к интерлейкину-2 (IL -2). Совместно с белком75К антиген CD 25 образует высокоаффинный рецептор ИЛ-2. CD 25 экспрессируется на активированных Т-лимфоцитах.

«Тяжелейший аутотоксикоз» - такой термин был введен около ста лет назад известным немецким врачом-бактериологом для описания патологического состояния, при котором иммунная система человека «атакует» его же собственные органы и ткани. Эрлих полагал, что с биологической точки зрения в аутоиммунности (еще одно введенное им определение) нет ничего абсурдного, когда она находится под строжайшим контролем. Однако медицинское сообщество не приняло столь неоднозначной идеи. В самом деле, зачем природе встраивать в организм человека механизм, способный разрушать своего носителя?

Однако врачи время от времени сталкивались с заболеваниями, которые попадали под концепцию Эрлиха. Среди них, . Выяснилось, что у подобных больных обычно нарушена функция особых лейкоцитов, известных как CD4 + -T-лимфоциты (они названы так потому, что созревают в тимусе - железе, расположенной в грудной клетке чуть выше сердца, и несут на своей поверхности молекулы гликопротеина CD4). В норме они играют роль «старших офицеров», которые отдают команду другим клеткам иммунной системы к наступлению на вторгшихся в организм врагов - болезнетворных микроорганизмов, но иногда направляют оружие против органов и тканей собственного тела.

Эрлих оказался прав и в другом: недавно идентифицированы клетки, специализирующиеся на возвращении на путь истинный вышедшей из повиновения иммунной системы. Они получили название регуляторных Т-клеток. Будучи частью популяции CD4 + -T-клеток, они поддерживают мир и согласие между иммунной системой и организмом. Кроме того, выяснилось, что им свойственна не только миротворческая функция: они также влияют на реакцию иммунной системы на проникшие в организм инфекционные агенты, опухолевые клетки, трансплантированные органы, клетки плода при наступлении беременности и т. д. Если удастся выяснить, как они выполняют свои обязанности, и почему их работа иногда дает сбой, исследователи получат возможность контролировать деятельность этих регуляторов и при необходимости подавлять иммунную активность.

Исследователи обнаружили, что для обеспечения самотолерантности (способности удерживать иммунную систему в рамках) принимается множество мер предосторожности. Первая линия обороны, во всяком случае, в том, что касается Т-клеток, располагается в тимусе. Здесь созревшие Т-клетки проходят серьезный «курс обучения» и настраиваются на крайне слабую реакцию на здоровые клетки организма-хозяина. Клетки, не поддающиеся «дрессировке», отбраковываются. Однако ни одна система не застрахована от ошибок, и некоторое количество аутоагресивных Т-клеток ускользает от контроля. Попадая в кровоток и лимфу, они создают угрозу запуска аутоиммунной реакции.
Кровь и лимфа представляют собой вторую линию обороны.

34(часть 2)

В-лимфоциты, плазматическая клетка.

B-лимфоциты (B-клетки) - это тип лимфоцитов, обеспечивающий гуморальный иммунитет.

У взрослого человека и млекопитающих B-лимфоциты образуются в костном мозге из стволовых клеток, у эмбрионов - в печени и костном мозге.

Главная функция B-лимфоцитов (а вернее плазматических клеток, в которые они дифференцируются) - это выработка антител. Воздействие антигена стимулирует образование клона B-лимфоцитов, специфического к данному антигену. Затем происходит дифференцировка новообразованных B-лимфоцитов в плазматические клетки, вырабатывающие антитела. Эти процессы проходят в лимфоидных органах, регионарных к месту попадания в организм чужеродного антигена.

В различных органах проходит накопление клеток, продуцирующих иммуноглобулины разных классов:

в лимфоузлах и селезенке находятся клетки, продуцирующие иммуноглобулины М и иммуноглобулины G;

в пейеровых бляшках и других лимфоидных образованиях слизистых оболочек находятся клетки, продуцирующие иммуноглобулины А и Е.

Контакт с любым антигеном инициирует образование антител всех пяти классов, но после включения регуляторных процессов в специфических условиях начинают преобладать иммуноглобулины определенного класса.

В норме в организме в небольших количествах присутствуют антитела практически ко всем существующим антигенам. Антитела, полученные от матери, присутствуют в крови новорожденного.

Антителообразование в плазматических клетках, которые образуются из B-лимфоцитов, тормозит выход в дифференцировку новых B–лимфоцитов по принципу обратной связи.

Новые B-клетки не выйдут в дифференцировку, пока в данном лимфоузле не начнется гибель клеток, продуцирующих антитела, и только в случае, если в нем будет еще антигенный стимул.

Данный механизм осуществляет контроль над ограничением выработки антител до уровня, который необходим для эффективной борьбы с чужеродными антигенами.

Этапы созревания

Антигеннезависимая стадия созревания В-лимфоцитов Антигеннезависимая стадия созревания В-лимфоцитов происходит под контролем локальных клеточных и гуморальных сигналов от микроокружения пре-В-лимфоцитов и не определяется контактом с Аг. На этой стадии происходит формирование отдельных пулов генов, кодирующих синтез Ig, а также экспрессия этих генов. Однако, на цитолемме пре-В-клеток ещё нет поверхностных рецепторов - Ig, компоненты последних находятся в цитоплазме. Образование В-лимфоцитов из пре-В-лимфоцитов сопровождается появлением на их поверхности первичных Ig, способных взаимодействовать с Аг. Только на этом этапе В-лимфоциты попадают в кровоток и заселяют периферические лимфоидные органы. Сформировавшиеся молодые В-клетки накапливаются в основном в селезёнке, а более зрелые - в лимфатических узлах. Антигензависимая стадия созревания В-лимфоцитов Антигензависимая стадия развития В-лимфоцитов начинается с момента контакта этих клеток с Аг (в том числе - аллергеном). В результате происходит активация В-лимфоцитов, протекающая в два этапа: пролиферации и диффе-ренцировки. Пролиферация В-лимфоцитов обеспечивает два важных процесса: - Увеличение числа клеток, дифференцирующихся в продуцирующие AT (Ig) В-клетки (плазматические клетки). По мере созревания В-клеток и их превращения в плазматические клетки происходит интенсивное развитие бе-локсинтезирующего аппарата, комплекса Гольджи и исчезновение поверхностных первичных Ig. Вместо них продуцируются уже секретируемые (т.е. выделяемые в биологические жидкости - плазму крови, лимфу, СМЖ и др.) антигенспецифические AT. Каждая плазматическая клетка способна секретировать большое количество Ig - несколько тысяч молекул в секунду. Процессы деления и специализации В-клетки осуществляются не только под влиянием Аг, но и при обязательном участии Т-лимфоцитов-хелперов, а также выделяемых ими и фагоцитами цитокинов - факторов роста и дифференцировки; - Образование В-лимфоцитов иммунологической памяти. Эти клоны В-клеток представляют собой долгоживущие рециркулирующие малые лимфоциты. Они не превращаются в плазматические клетки, но сохраняют иммунную «память» об Аг. Клетки памяти активируются при повторной их стимуляции тем же самым Аг. В этом случае В-лимфоциты памяти (при обязательном участии Т-клеток-хелперов и ряда других факторов) обеспечивают быстрый синтез большого количества специфических AT, взаимодействующих с чужеродным Аг, и развитие эффективного иммунного ответа или аллергической реакции.

В-клеточный рецептор.

B-клеточный рецептор, или B-клеточный рецептор антигена (англ. B-cell antigen receptor, BCR) - мембранный рецептор В-клеток, специфично узнающий антиген. Фактически В-клеточный рецептор представляет собой мембранную форму антител (иммуноглобулинов), синтезируемых данным В-лимфоцитом, и имеет ту же субстратную специфичность, что и секретируемые антитела. С В-клеточого рецептора начинается цепь передачи сигнала внутрь клетки, которая в зависимости от условий может приводить к активации, пролиферации, дифференцировке или апоптозу В-лимфоцитов. Сигналы, поступающие (или не поступающие) от B-клеточного рецептора и его незрелой формы (пре-В-клеточного рецептора), оказываются критическими в созревании В-лимфоцитов и в формировании репертуара антител организма.

Помимо мембранной формы антитела, в состав B-клеточного рецепторного комплекса входит вспомогательный белковый гетеродимер Igα/Igβ (CD79a/CD79b), который строго необходим для функционирования рецептора. Передача сигнала от рецептора проходит при участии таких молекул, как Lyn, Syk, Btk, PI3K, PLCγ2 и других.

Известно, что В-клеточный рецептор играет особую роль в развитии и поддержании злокачественных В-клеточных заболеваний крови. В связи с этим большое распространение получила идея применения ингибиторов передачи сигнала от этого рецептора для лечения данных заболеваний. Несколько таких препаратов показали себя эффективными и сейчас проходят клинические испытания. Но мы про них ничего и никому не скажем. т-с-с-сс!

В1 и В2- популяции.

Выделяют две субпопуляции В-клеток: В-1 и B-2. Субпопуляцию В-2 составляют обычные В-лимфоциты, к которым относится всё сказанное выше. В-1 - это относительно небольшая группа В-клеток, обнаруживаемая у человека и мышей. Они могут составлять около 5% от общей популяции B-клеток. Такие клетки появляются в течение эмбрионального периода. На своей поверхности они экспрессируют IgM и небольшое количество (или вовсе не экспрессируют) IgD. Маркером этих клеток является CD5. Однако он не является обязательным компонентом клеточной поверхности. В эмбриональном периоде В1-клетки появляются из стволовых клеток костного мозга. В течение жизни пул B-1-лимфоцитов поддерживается за счёт активности специализированных клеток–предшественников и не пополняется за счёт клеток, происходящих из костного мозга. Клетка–предшественница отселяется из кроветворной ткани на свою анатомическую нишу - в брюшную и плевральную полости - ещё в эмбриональном периоде. Итак, место обитания B-1-лимфоцитов - прибарьерные полости.

B-1-лимфоциты значительно отличаются от B-2-лимфоцитов по антигенной специфичности продуцируемых антител. Антитела, синтезированные B-1-лимфоцитами, не имеют значительного разнообразия вариабельных участков молекул иммуноглобулинов, но, напротив, ограничены в репертуаре распознаваемых антигенов, и эти антигены - наиболее распространённые соединения клеточных стенок бактерий. Все B-1-лимфоциты - как бы один не слишком специализированный, но определённо ориентированный (антибактериальный) клон. Антитела, продуцируемые B-1-лимфоцитами, почти исключительно IgM, переключение классов иммуноглобулинов в B-1-лимфоцитах не «предусмотрено». Таким образом, B-1-лимфоциты - «отряд» противобактериальных «пограничников» в прибарьерных полостях, предназначенных для быстрой реакции на «просачивающиеся» через барьеры инфекционные микроорганизмы из числа широко распространённых. В сыворотке крови здорового человека преобладающая часть иммуноглобулинов - продукт синтеза как раз B-1-лимфоцитов, т.е. это относительно полиспецифичные иммуноглобулины антибактериального назначения.

Т-лимфоциты.

Т-лимфоциты образуют три основные субпопуляции:

1) Т-киллеры осуществляют иммунологический генетический надзор, разрушая мутированные клетки собственного организма, в том числе и опухолевые, и генетически чужеродные клетки трансплантатов. Т-киллеры составляют до 10 % Т-лимфоци-тов периферической крови. Именно Т-киллеры своим воздействием вызывают отторжение пересаженных тканей, но это и первая линия защиты организма от опухолевых клеток;

2) Т-хелперы организуют иммунный ответ, воздействуя на В-лимфоциты и давая сигнал для синтеза антител против появившегося в организме антигена. Т-хелперы секретируют интерлейкин-2, воздействующий на В-лимфоциты, и г-интерферон. Их в периферической крови до 60–70 % общего числа Т-лимфоцитов;

3) Т-супрессоры ограничивают силу иммунного ответа, контролируют активность Т-киллеров, блокируют деятельность Т-хелперов и В-лимфоцитов, подавляя избыточный синтез антител, которые могут вызывать аутоиммунную реакцию, т. е. обратиться против собственных клеток организма.

Т-супрессоры составляют 18–20 % Т-лимфоцитов периферической крови. Избыточная активность Т-суп-рессоров может привести к угнетению иммунного ответа вплоть до его полного подавления. Это бывает при хронических инфекциях и опухолевых процессах. В то же время недостаточная деятельность Т-супрес-соров приводит к развитию аутоиммунных заболеваний в связи с повышенной активностью Т-киллеров и Т-хелперов, не сдерживаемых Т-супрессо-рами. Для регулирования иммунного процесса Т-супрессоры секретируют до 20 различных медиаторов, ускоряющих или замедляющих активность Т– и В-лимфоцитов. Кроме трех основных видов, существуют и другие виды Т-лимфоцитов, в том числе Т-лимфоциты иммунологической памяти, сохраняющие и передающие информацию об антигене. При повторной встрече с этим антигеном они обеспечивают его распознавание и тип иммунологического ответа. Т-лимфоциты, выполняя функцию клеточного имму-нитета, кроме того, синтезируют и секретируют ме-диаторы (лимфокины), которые активизируют или за-медляют деятельность фагоцитов, а также медиаторы с цитотоксилогическим и интерферонопо-добным действиями, облегчая и направляя действие неспецифической системы.

Этапы созревания.

Созревание Т-лимфоцитов начинается с того, что некоторая часть лимфоидных стволовых клеток направляется в тимус, где и идет процесс созревания. В процессе дифференцировки в центральных иммунных органах стволовая клетка проходит несколько этапов без участия антигена (антигеннезависимая дифференцировка).

Пока стволовая клетка находится в костном мозге, на ней появляются структуры, указывающие, по какому пути дифференцировки (Т- или В-) она пойдет. Ранний предшественник Т-лимфоцитов имеет на своей мембране гликопротеин с молекулярной массой 3,3 104 D (ГП-33), который впоследствии соединяется с антигенраспознающим рецептором.

На втором этапе появляются незрелые предшественники Т-лимфоцитов. В этот период на мембране лимфоцитов образуются антигенраспознающие рецепторы, после этого лимфоциты способны распознавать антигены.

Для Т-лимфоцита антигенраспознающим рецептором является димерная молекула, относящаяся к суперсемейству иммуноглобулинов.

Появление на поверхности предшественников лимфоидных клеток определенных рецепторов служит сигналом, позволяющим клеткам дифференцироваться в специализированную линию лимфоцитов. Имеющие такие рецепторы клетки мигрируют в особую область центральных иммунных органов, где взаимодействуют с микроокружением, способствующим дифференцировке данной клетки. После контакта с клеткой-предшественником, в стромальных клетках локального микроокружения развиваются процессы, направленные на "обучение" клеток-предшественников для их дальнейшей дифференцировки в отдельную линию.

Позитивная и негативная селекция в тимусе.

Предшественники Т-лимфоцитов на ранних этапах дифференцировки в тимусе подвергаются позитивной и негативной селекции. Не прошедшие селекцию предшественники подвергаются апоптозу. При негативной селекции элиминируются клетки, распознающие аутоантигены. Механизмы представления аутоантигенов в тимусе до настоящего времени мало изучены, а данные о становлении этого процесса в раннем онтогенезе практически отсутствуют. В отличие от тимуса, в периферических органах и тканях иммунной системы происходит представление чужеродных антигенов, и в этом процессе участвуют иммунные протеасомы. Целью данной работы являлась проверка предположения об участии иммунных протеасом в представлении аутоантигенов в тимусе, а также изучение становления процесса негативной селекции в раннем онтогенезе. Количественную оценку экспрессии субъединиц иммунных протеасом LMP7 и LMP2 в тимусе проводили с помощью Вестерн-блоттинга в пре- и постнатальном онтогенезе у крыс. Распределение иммунных протеасом в клетках тимуса анализировали с помощью иммуногистохимии. Параллельно оценивали динамику уровня апоптоза в тимусе на тех же этапах онтогенеза с помощью проточной цитофлуориметрии. Иммуногистохимически показано, что экспрессия иммунных протеасом наблюдается не в тимоцитах, а, вероятнее всего, в эпителиальных и дендритных клетках тимуса, которые являются антиген-представляющими для Т-клеток. Этот факт дает основание полагать, что негативная селекция в тимусе происходит с участием иммунных протеасом. Обе иммунные субъединицы иммунных протеасом обнаруживаются в тимусе, начиная с 18-го эмбрионального дня (Э). Причем количество этих субъединиц на Э18 невелико и возрастает к Э21, а затем остается на том же уровне до 19-го постнатального дня (П19). В то же время, на Э18 в тимусе регистрируется высокий уровень апоптоза, который снижается к Э21 и далее остается неизменным до П30. Полученные данные свидетельствуют о том, что негативная селекция в тимусе может происходить у плодов уже на Э18, а к Э21 усиливается до уровня, характерного для постнатальных животных. Высокий уровень апоптоза, наблюдаемый на Э18 связан, по-видимому, не столько с процессами негативной селекции, сколько с активной миграцией предшественников Т-лимфоцитов в тимус накануне Э18, а, как известно, количество локусов для мигрирующих предшественников в тимусе ограничено. Таким образом, впервые была показана экспрессия иммунных протеасом в тимусе, участвующих в представлении аутоантигенов при негативной селекции, в перинатальном онтогенезе. Становление процесса негативной селекции у крыс происходит еще в пренатальном онтогенезе.

Позитивная селекция : погибают тимоциты, не связавшие ни одного из доступных комплексов MHC-пептид. В результате позитивной селекции в тимусе погибает около 90% тимоцитов.

Негативная селекция уничтожает клоны тимоцитов, связывающих комплексы MHC-пептид со слишком высокой аффинностью. Негативная селекция элиминирует от 10 до 70% клеток, прошедших позитивную селекцию.

Т-клеточный рецептор. Строение, функции. Активный центр

Т-клеточные рецепторы (англ. TCR) - поверхностные белковые комплексы Т-лимфоцитов, ответственные за распознавание процессированных антигенов, связанных с молекулами главного комплекса гистосовместимости (англ. MHC) на поверхности антиген-представляющих клеток. TCR состоит из двух субъединиц, заякоренных в клеточной мембране и ассоциирован с многосубъединичным комплексом CD3. Взаимодействие TCR с MHC и связанным с ним антигеном ведет к активации Т-лимфоцитов и является ключевой точкой в запуске иммунного ответа.

TCR представляет собой гетеродимерный белок, состоящий из двух субъединиц - α и β либо γ и δ, представленных на поверхности клетки. Субъединицы закреплены в мембране и связаны друг с другом дисульфидной связью.

По своей структуре субъединицы TCR относятся к суперсемейству иммуноглобулинов. Каждая из субъединиц образована двумя доменами с характерной иммуноглобулиновой укладкой, трансмембранным сегментом и коротким цитоплазматическим участком.

N-концевые домены являются вариабельными (V) и отвечают за связывание антигена, презентируемого молекулами главного комплекса гистосовместимости. В составе вариабельного домена содержится характерный для иммуноглобулинов гипервариабельный участок (CDR). За счет необычайного разнообразия данных участков, различные Т-клетки способны распознавать широчайший спектр различных антигенов.

Второй домен - константный (C) и его структура одинакова у всех субъединиц данного типа у конкретной особи (за исключением соматических мутаций на уровне генов любых других белков). На участке между С-доменом и трансмембранным сегментом имеется остаток цистеина, с помощью которого между двумя цепями TCR образуется дисульфидная связь.

Субъединицы TCR агрегированы с мембранным полипептидным комплексом CD3. CD3 образован четырьмя типами полипептидов - γ, δ, ε и ζ. Субъединицы γ, δ и ε кодируются тесно сцепленными генами и имеют близкую структуру. Каждая из них образована одним константным иммуноглобулиновым доменом, трансмембранным сегментом и длинной (до 40 аминокислотных остатков) цитоплазматической частью. Цепь ζ имеет маленький внеклеточный домен, трансмембранный сегмент, и большой цитоплазматический домен. Иногда вместо цепи ζ в состав комплекса входит цепь η - более длинный продукт того же гена, полученный путем альтернативного сплайсинга.

Поскольку структура белков комплекса CD3 инвариантна (не имеет вариабельных участков), они не способны определять специфичность рецептора к антигену. Распознавание является исключительно функцией TCR, а CD3 обеспечивает передачу сигнала в клетку.

Трансмембранный сегмент каждой из субъединиц CD3 содержит отрицательно заряженный аминокислотный остаток, а TCR – положительно заряженный. За счет электростатических взаимодействий они объединяются в общий функциональный комплекс Т-клеточного рецептора. На основании стехиометрических исследований и измерения молекулярной массы комплекса наиболее вероятным его составом является (αβ)2+γ+δ+ε2+ζ2.

TCR, состоящие из αβ-цепей и γδ-цепей весьма близки по структуре. Эти формы рецепторов по-разному представлены в различных тканях организма.

Структура рецептора Т-лимфоцита во многом напоминает структуру молекулы антитела. Молекулы Т-клеточных рецепторов (ТКР) состоят из двух цепей - а и р. Каждая из них содержит V- и С-домены, их структура закреплена дисульфидными связями. Вариабельные домены а- и р-цепей имеют не 3-4, как у антител, а не менее 7 гипервариабельных участков, которые формируют активный центр рецептора. За С-доменами, около мембраны, располагается шарнирная область из 20аминокислотных остатков. Она обеспечивает соединение а- и р-цепей с помощью дисульфидных связей. За шарнирной областью располагается трансмембранный гидрофобный домен из 22 аминокис­лотных остатков, он связан с коротким внутрицитоплазматичеким доменом из 5-16 аминокислотных остатков. Распознавание Т-клеточным рецептором представляемого антигена происходит следующим образом. Молекулы МНС классаП, как и рецепторы Т-лимфоцитов, состоят из двух полипептидных цепей - а и р. Их активный центр для связывания представляемых антигенных пептидов имеет форму «щели». Она формируется спиральными участками а- и р-цепей, соединенными на дне «щели» между собой неспиральной областью, образованной сегментами той и другой цепи. В этом центре (щели) молекула МНС присоединяет процессированный антиген и таким образом представляет его Т-клеткам (рис. 63). Активный центр Т-клеточного рецептора образуется гипервариабельными участ­ками а- и р-цепей. Он также представляет собой своеобразную «щель», структура которой соответ­ствует пространственной структуре представляемой молекулой МНС классаП пептидного фрагмента антигена в такой же степени, как структура активного центра молекулы антитела соответствует пространственной структуре детерминанта антигена. Каждый Т-лимфоцит несет рецепторы только для одного какого-то пептида, то есть специфичен в отношении конкретного антигена и связывает процес­сированный пептид только одного типа. Присоединение представляемого антигена к Т-клеточному рецептору индуцирует передачу сигнала от него на геном клетки.

Для функционирования любого ТКР необходим его контакт с молекулой CD3. Она состоит из 5субъединиц, каждая из которых кодируется своим геном. Молекулы CD3 имеют все субклассы Т-лимфоцитов. Благодаря взаимодействию Т-клеточного рецептора с молекулой CD3 обеспечиваются следующие процессы: а)вынос ТКР на поверхность мембраны Т-лимфоцита; б)придание соответствую­щей пространственной структуры молекуле Т-клеточного рецептора; в)прием и передача сигнала Т-клеточным рецептором после его контакта с антигеном в цитоплазму, а затем в геном Т-лимфоцита через фосфатидилинозитольный каскад с участием посредников.

В результате взаимодействия молекулы МНС классаП, несущей антигенный пептид, с рецептором Т-лимфоцита пептид как бы встраивается в «щель» рецептора, которую образуют гипервариабельные участки а- и р-цепей, контактируя при этом с той и другой цепью

Рекомбинация генов, кодирующих цепи Т-клеточного рецептора

Специфичность Т-клеток к определенным антигенам побудила также к поиску генетических механизмов, которые увеличивают многообразие их рецепторов. Многие исследователи предполагали, что гены, кодирующие рецепторы Т-клеток, построены аналогично генам антител. Однако долгое время не удавалось идентифицировать поверхностные структуры, которые обусловили способность Т-клеток распознавать антигены. В настоящее время установлено, что рецептор Т-клеток образован двумя субъединицами и напоминает Fab-фрагмент антитела.

В 1984 г. Т. Мак М. Дэвис клонировали ген, который перестраивался только в Т-клетках, но не в В-клетках. Такого гена не было в других соматических клетках, что свидетельствовало о том, что он кодирует именно те структуры, которые являются различными в разных клонах Т-лимфоцитов.

Установка нуклеотидной последовательности этих генов выявило их гомологию к генов, кодирующих синтез иммуноглобулинов. Первым клонированным геном ТКР оказался ген, кодирующий ß-цепь ТКР. Затем X. Саито и Д. Кранц клонировали гены Т-клеток, кодирующих у-цепь ТКР. Позже было идентифицировано гены, кодирующие синтез α-цепей, которые вместе с ß-цепями образуют гетеродимерний комплекс - в |-ТКР. Функциональное значение в-цепей оставалось определенное время неизвестным, пока в пределах локуса генов а-цепей не было идентифицировано гены, кодирующие б-цепи Т-клеточного рецептора. Оказалось, что у- и б-цепи образуют гетеродимерний комплекс, который является альтернативным вариантом Т-клеточного рецептора и который называют уб-ТКР. Т-клетки, экспрессируют уб -ТКР, представляют отдельную популяцию лимфоцитов, функцию которых еще окончательно не выяснено. Оказалось, что гены Т-клеточных рецепторов, как и гены иммуноглобулинов, в эмбриональном геноме также представлены значительным количеством генных сегментов, которые рекомбинируют при развитии Т-клеток. Согласно генные сегменты V, D и J кодирующих вариабельные домены ТКР, а С-сегмента - константные домены. К константного домена каждой цепи рецептора Т-клеток присоединена последовательность гидрофобных аминокислот, заякорюють его в мембране Т-клеток. Итак, рецепторы Т-клеток представлены только в мембраносвязанных форме и во время созревания Т-клеток переключения различны х С-сегментов не происходит.

Гены ТКР человека и мыши построены принципиально подобно. Они состоят из четырех локусов, кодирующих а-, ß-, у-и б-цепи Т-клеточного рецептора. В геноме человека локус генов ß-цепей ТКР размещен на 7-й хромосоме, а-цепей - на 14-й, у-цепей на 7-й хромосоме и гены б-цепей ТКР размещены в середине локуса генов а-цепей, то есть на 14-й хромосоме. Локусы генов а-и у-цепей представлены сегментами V, J и С, а следовательно, подобные по организации в генов легких цепей иммуноглобулинов. При этом локус у-цепей содержит несколько вариантов Су-сегментов, каждому из которых предшествует несколько Jy-сегментов (аналогично организации генов Х-цепей иммуноглобулинов), а локус а-цепей содержит значительное количество (около сотни) Vo-сегментов, несколько Ja -сегментов и один Са-сегмент (напоминает организацию локуса генов к-цепей иммуноглобулинов). Локусы генов ß-и б-цепей состоят из четырех кластеров генных сегментов V, D, J и С (подобно организации локуса Н-цепей иммуноглобулинов). Поэтому CDR3-perioHH ß-и ö-цепей более изменчивы, чем а-и у-цепей, поскольку место соединения трех генетических сегментов V, D и J кодирует третий гипервариабельную петлю в активных центрах ТКР.

При образовании Т-клеток, несущих в |-ТКР, сначала перестраиваются гены ß-цепи, а затем а-цепи, а в процессе образования клеток, несущих уб-ТКР, - соответственно гены б-и у-цепей. Благодаря тому, что локус генов б-цепей находится в середине локуса генов а-цепей, ни Т-клетка не может одновременно экспрессировать oß-и уб-ТКР. Кроме того, каждая цепь синтезируется только из одной пары гомологичных хромосом, т.е. при экспрессии генов ТКР происходит явление аллельных исключения.

Каждый из локусов Ig/TCR содержит определенное количество V, D и J сегментов, расположенных в определенном порядке: сначала идут повторяющиеся V-сегменты, затем D, если они есть, затем J-сегменты и константный регион (С). Часть генных сегментов является псевдогенами, большинство - функциональными генами, то есть транслируются в белок. Количество вариантов случайных комбинаций генных сегментов в процессе V(D)J рекомбинации определяет комбинативное разнообразие антигенных рецепторов лимфоцитов.

Молекулярный механизм рекомбинации всех семи локусов Ig/TCR идентичный. Эти генные перестройки происходят на ранних этапах дифференцировки лимфоцитов в костном мозге (для В-лимфоцитов) и тимусе (для Т-лимфоцитов) и представляют собой соматическую негомологичную рекомбинацию, в результате которой V, D и J генные сегменты сближаются, а промежуточная последовательность удаляется. Для локусов IGH@, TCRD, TCRB перестройка протекает в два этапа: сначала сближаются D и J сегменты, а затем происходит V-DJ соединение. Для остальных генов перестройка V-J происходит в один этап.

Популяции Т-лимфоцитов.

Среди Т-лимфоцитов различают две фенотипические субпопуляции клеток – CD4+-клeтки и СD8+-клетки. По функциональным характеристикам в популяции Т-лимфоцитов выделяют Т-хелперы гуморального иммунитета, Т-хелперы клеточного иммунитета, Т-супрессоры, Т-цитотоксические клетки. Т-хелперы гуморального и клеточного иммунитета имеют единого предшественника – ТH0-клетки, из которых они генерируются в ходе иммунного ответа.